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1. Introduction

1.1 Motivation

Air Force and SDI strategik defense missions will place stringent design requirements
on all structures used for mission support, especially those related to precision
tracking and pointing. Although these structures will have requirements related
to static performance under the environmental disturbances of the system, many
structural systems will be particularly sensitive to the dynamic environment, and
reducing this effect will be required for their success. These systems will also be
subjected to weight restrictions.

Techniques that can reduce the dynamic motion of these sensitive structures fall
into two categories: vibration isolation and vibration suppression. Each of these can
be further divided into categories of active and passive. Vibration isolation means
reducing the transmission of energy from the sources to the sensitive component,
usually by reducing the transmissibility of the connecting structures. Vibration sup-
pression reduces the dynamic motion that a component experiences by suppressing
the motion either at the attachment points or other critical points. It involves
changing the mass and stiffness characteristics of the structure to change its modal
characteristics, increasing structural damping, or augmenting the structure with
active control systems which improve its modal characteristics. Active isolation
and suppression - which have important weight, cost and complexity penalties -
will be employed for space-based systems. However, there is no substitute for
efficiency and good basic design in the passive primary structure, whether or not
it is augmented by active systems. The importance of dynamic response in system
performance dictates that optimal structural design must be considered from the
beginning of the design cycle.

The challenges summarized above call for accurate, reliable, and versatile design
and analysis tools. These tools must not just address individual disciplines, but
must be capable of application in integrated design situations. The Phase I effort
reported here has addressed several technology issues whose successful resolution
has laid the groundwork for development of a software package that integrates these
newly developed capabilities with existing methods. The result will be a design
tool which may be used to reduce the response of large, real-world structures to the
effects of various vibration environments with minimal weight penalty.

1.2 Results Achieved

The proposal that preceded this effort listed several technical problems related
to optimization which would have to be solved before a real-world optimization
capability for space structures could be developed. We are pleased to report that
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the Phase I work was successful in investigating and developing techniques for all
of these problems. The technical objectives set forth in the proposal are repeated
below and discussed in detail in this report.

1. Develop a method for optimization under steady-state dynamic loads.

2. Develop a method for optimization under transient dynamic loads.

3. Study structural optimization under the influence of active control systems.

4. Couple existing optimization software for structural damping design with an
existing viscoelastic material database system.

5. Develop a method of optimizing beam cross-sections based on cross-section
shape variables.

The first two developments, optimization for steady-state and transient dynamic
response, required development of new methodology, which is spelled out in some
detail in the following sections. The methods were programmed and demonstrated
on small academic structures, although the software could also be used for testing
with large, realistic models. In Phase II, it is expected that optimization will be
applied to problems such as minimizing settling time in slewing maneuvers or min-
imizing transmission of disturbances from energy sources. We at CSA are excited
about the potential we see in these developments and are eager to begin demon-
strating them on real-world problems.

An important consequence of the development of optimization methods for
dynamic loads is the ability to perform optimization of structures in the presence
of active control systems. Integration of the two systems in a single analysis pass
represents a significant advance over traditional methods which essentially implied
decoupling of control system dynamics from structural dynamics. This is important
because of the intimate interaction between control system dynamics and structural
dynamics in typical space structures. The developments reported here will offer the
designer an optimization tool based on a correct coupled analysis. However, no
optimization of control system parameters was attempted in the current effort.

The advance represented by these developments is shown symbolically in Fig-
ure 1. It builds on two previous developments: simultaneous structure-control sys-
tem analysis, and structural optimization with simpler responses. It will be com-
bined with these developments along with optimization of damping treatments in
the proposed integrated package. Simultaneous structure-control system design is
at present a research topic which is not proposed for inclusion in the new software.

The other two developments (database interaction and beam cross-section
design) are somewhat loosely related aspects of the design process that will be
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required in the Phase II implementation. Database interaction is needed in op-
timizing viscoelastic material selection so that the choices made by the optimizer
can be translited into available materials. Beam cross-section design is necessary
because design in terms of areas and moments of inertia, properties used for analy-
sis, is unsatisfactory. For example, in the absence of other constraints, optimization
software tends to make areas as small as possible and moments of inertia as large
as possible. Also, even realistic areas and moments of inertia must be manually
translated into cross-section details for final design.

A program called DYNOPT has been written to implement the methods that
have been developed. The Fortran program runs on VAX computers and is linked
to ADS, a general-purpose optimizer [1), and NASTRAN, a general-purpose finite
element code. Additional code has been written in DMAP, NASTRAN's matrix
manipulation language.

As will become apparent in the following sections, much has been accomplished.
However, in keeping with the spirit of SBIR Phase I projects, no final products were
developed. Software has been written and made to work, but much remains for
Phase II. Separate special-purpose codes need to be integrated. Errors and "rough
edges" need to be worked out, user experience and feedback accrued, and proper
documentation provided. Large problems need to be undertaken as a demonstration
to the SDI community. These matters are addressed further in Section 11.
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2. Review of Structural Optimization

Structural optimization has been an active research field for about thirty years
(2,3,4]. This activity is directed toward systematic methods for evolving structural
designs that are optimal in the sense of some performance measure such as minimum
weight, subject to constraints such as stress or displacement limits.

2.1 Basic Concepts in Optimization

An optimization problem is characterized by three components: design variables,
constraints, and an objective function.

Design variables are aspects of the model that the user allows the optimization
software to vary. In structural optimization, the design variables are typically sizing
variables such as thicknesses, although configuration variables and even material
properties are also possible design variables.

Constraints are classified as side constraints (simple upper and lower bounds on
design variable values) and behavior constraints (response functions such as displace-
ments that are generally implicit functions of the design variables). Side constraints
are strictly enforced, but an initial design that violates one or more behavior con-
straints is permitted. Such a design is called infeasible. When an optimizer is
started with an infeasible design, it ignores the objective function until it succeeds
in satisfying all violated behavior constraints. In some applications, the sole purpose
of the optimization problem is to find a feasible design.

The objective function is the function to be minimized. While weight is the
typical objective in structural design, other criteria may be selected as well.

Stated formally, the problem is

Minimize f(X)

subject to (X)< j= ,...,m

and X < Xk< X k=1,...,n (1)

where X is a vector of design variables, f is the chosen objective function, Xr
and XU are side constraints, and gj(X) are the behavior constraints. Behavior
constraints are expressed in normalized form as

gj = 1 b (2)

or

o= b(X) 1 (3)

where b(X) is some behavior corresponding to particular design variable values X,
b.,i, is a minimum acceptable value, and b. is a maximum acceptable value.

5



2.2 Sensitivity Analysis

Optimization software uses search algorithms that rely on gradients or partial
derivatives of the objective function f(X) and the constraints g, with respect to
each design variable. For simple optimization problems, it is possible to approxi-
mate these gradients by finite differences. For structural analysis, finite difference
methods would be prohibitive because they would require incrementing each design
variable in turn and then performing a complete reanalysis. Thus the finite element
software must be able to supply sensitivities, or gradients, along with the finite
element results. For structural dynamic analysis, this means gradients of natural
frequencies, mode shapes, steady-state responses, or transient responses.

Frequency sensitivities are a straight-forward matter [5). Mode shape or eigen-
vector sensitivity algorithms have been worked out [6], but they are costly and could
benefit from approximations similar to reanalysis techniques [7]. Such approxima-
tion techniques are being pursued by the present author under another Air Force
contract and are expected to be available for exploitation in Phase II of the present
effort.

2.3 Approximate Models

A key concept used in many structural optimization codes [8,9] is an approzimate
modeL This concept, developed by Schmit and Miura [4], makes it possible to
achieve near-optimal designs with very few complete finite element analyses. Finite
element analyses with their accompanying sensitivity calculations consume the vast
majority of the computer time in an optimization cycle. Thus, when properly
applied, approximation techniques can achieve a great improvement in efficiency
when compared with direct coupling of an optimizer with a finite element code.
An outline flow diagram of optimization with an approximate model is shown in
Figure 2.

The basic idea is to use the sensitivity information to set up a Taylor series
expansion of both the objective function and the constraint function, i.e., they are
linearized. Provided these functions are reasonably well behaved, the linearized
functions form a reasonably good approximation over a reasonably wide range of
design variable values. Thus, the optimizer can search for a local optimum within
such a region. Since evaluation of the linearized functions is trivial, this local
optimization process takes very little computer time. In fact, it is ironic that
approximation techniques in many cases make questions of efficiency of the op-
timizer irrelevant. It makes no difference if the optimizer takes a lot of iterations,
if the iterations cost practically nothing.

Only after the approximate optimization is complete is the structure re-analyzed.
The linearization process is then repeated and the new approximate optimization

6



problem is solved. At each such stage, move limits are imposed to insure that
the structure is not changed so drastically that the linearization is not valid. The
process of constraint linearization and optimization is repeated until no further
design improvements can be found.

Sensitivity Analysis

Approximate Model

Optimization Code

Figure 2. Two-level iteration with an approximate model
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3. Review of Forced Dynamic Response Analysis

After discretization by finite elements, the equations of motion for forced response
may be cast in the following general form:

OU _8 2 U
KU+B- + M----- -P(t) (4)

Where K is the stiffness matrix, B the damping matrix, M the mass matrix, U
the node-point displacement vector, and P the applied load vector. An important
special case arises when P(t) is sinusoidal, and transient effects are assumed to
have died out. In this case the response is also sinusoidal and the equations may
be written as a function of the excitation frequency w.

[K(l + ig) + iwB - w2M]U(w) = P(w) (5)

Damping is difficult to characterize a priori. It is common practice to assume
structural damping values that are uniform spatially but variable with frequency,
i.e., for a particular mode i,

bi = gi.m1m (6)

where gi is obtained by interrogating a user-supplied structural damping table or
function g(w). Hence the (1 + ig) term in (5).

3.1 Modal Superposition

Modal superposition is an efficient means of solving either the transient problem
(4) or the steady-state problem (5). In this approach, a set of undamped natural
frequencies and mode shapes I are first calculated. Independent degrees of freedom
are then transformed from node-point displacements U to a modal amplitude vector
q using the mode shape matrix .

U =(

Substituting (7) into both (4) and (5) and premultiplying by T yields transient
and steady-state response equations expressed in modal coordinates:

kq + b + mn = Q(t) (8)

and
[k(l + ig) + iwb - w2m]q(w) = Q(w) (9)

where Q = tTp is the modal load. k and m are diagonal matrices of modal
stiffness, and mass, respectively. For the special case of uniform structural damping,
the matrix b is also diagonal, so that the equations are uncoupled and thus easily
solved. More general damping produces coupled modal damping matrices so that
a small system of complex linear equations must be solved for each time step or
frequency step.

8



4. Optimization with Steady-state Dynamic Loads

The challenge in minimizing the peaks in a steady-state frequency response is to
compute the total derivative of a particular dynamic response peak with respect
to design variables. Refer to Figure 3 which shows a hypothetical peak at some
resonant frequency w.. If one were to calculate sensitivities at this particular fre-
quency and then proceed with optimization, the results would almost certainly
be unsatisfactory. While the optimizer might succeed in reducing the response at
that particular frequency, it would likely do so by simply shifting the peak to a
neighboring frequency. Thus it is necessary to compute the total derivative of the
peak in a manner which accounts for its shift in frequency as well as its change in
amplitude. Mathematically, we can express the total derivative of some constraint
gj with respect to a particular design variable X;:

dgj = 89 fi +  gi -ko (10)
d'Xk 8X,... + 8 X,

The first term on the right-hand side represents the sensitivity of the response at
the natural frequency w,,, and the second term represents the shift in the natural
frequency (at which we assume the peak occurs).

10 "2

10- 3

C 10- .

0

10-3

10-6 I I j I i

10' 2 3 4 8 a 7 8 0 101

Frequency, Hz

Figure 3. Hypothetical frequency response function
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4.1 Optimization with Modal Structural Damping

The approach taken here rests on the assumption that all or nearly all of the response
at a peak is due to a single normal mode. This would only be invalid in the case
of closely space peaks, in which case one could minimize or constrain both peaks
simultaneously and achieve the desired effect. We focus on a particular peak due to
a mode with frequency w,, and a mode shape I. The modal stiffness is the scalar
value k = OTK.I, (K being the stiffness matrix), the modal mass is the scalar value
m = *TM41 (typically normalized to unit value), and the modal damping is g.

The peak displacement response at some point uj due to this single mode may
be expressed as

4kj(tTp)(11)A:k(1 + ig) - 2

where Ij is the mode shape entry corresponding to displacement degree of freedom
U. For small damping values, the peak occurs very near the undamped natural
frequency w,,, for which k - w 2m = 0, so that the magnitude of the peak complex
response is simply

Uj - g (12)

In this effort we are not attempting to maximize g, so we are left with three ways
to minimize U:

1. Reduce 4 1. This means minimizing the participation of the mode in question
at the particular response location. In a beam structure, for example, this
might mean moving the nodes of the mode shapes toward the response point.

2. Reduce OTp. This means reducing the modal participation of the load vector.
In the case of a beam with a point load, again the node might be moved toward
the load.

3. Increase k. Loosely speaking, this means adding stiffness to the structure in
a manner that does not add mass, or adds it less than proportionately.

Using a general-purpose optimizer in conjunction with the peak response sen-
sitivities derived above should, in theory, lead to optimized designs which take
advantage of any of the three available avenues that were discussed above. The
sensitivity data should contain all the information required to guide the design in
whatever manner produces the most decrease in the objective function while satis-
fying the constraints. Note that we have not specified whether peak responses are
to be used as the objective function or constraints. It is common practice to choose
weight as the function to be minimized, while applying constraints to responses. For
the rest of this discussion we will assume this choice. However, there is no reason
why a response cannot be chosen as the objective function. This choice would have
no effect on most of the required computations.

10



4.2 Sensitivity Analysis

Differentiating equation (12) using the chain rule and denoting derivatives with
respect to design variables by primes:

4 1/(Tp) *j(0'TP)_ (Tpk
U= kg + kg k2g (13)

The three terms on the right-hand side represent the three ways of reducing re-
sponses that were listed above. This sensitivity expression is seen to require sen-
sitivities of the mode shapes 4 and the modal stiffness k. Of course, U, could be
reduced by increasing the modal damping factor g, but that is not the thrust of this
effort. The modal stiffness sensitivity may be derived by differentiating k = 4TK:

k' = 2§'TK* + W'K'4 (14)

See the Appendix for derivations of frequency and mode shape sensitivities. The
mode shape sensitivities are calculated using Nelson's method [6] as implemented
in DMAP language by Wallerstein [10]. All these sensitivities depend ultimately on
stiffness and mass matrix sensitivities which may be calculated either by a finite dif-
ference method or using the stiffness/mass sensitivity module in MSC/NASTRAN.

4.3 Optimization with Viscous Damping

Viscous damping forces are proportional to velocity and independent of frequency.
The primary incentive for considering viscous damping in this effort is that velocity-
sensitive active controllers are in effect viscous dampers. From a computational
viewpoint, the main effect of viscous damping is to couple the equations of motion
even when expressed in modal coordinates.

fk(l + ig) + iwb - W2rn]q(w) = Q(w) (15)

which can be solved directly:

q(w) = [k(1 + ig) + iWb - w2m]-q(w) (16)

after which physical displacements may be obtained using (7).

11



5. Optimization with Transient Dynamic Loads

Transient dynamic motion is governed by the following equations of motion. These
equations are given in matrix form, i.e., after spatial discretization but before tem-
poral discretization.

KU+B u 92U(17)
iU+B + M - = P(t)

These equations are discretized in time by picking a suitable time step and applying
a forward difference operator.

5.1 Newmark Beta Method

MSC/NASTRAN uses the Newmark Beta method of integration:

[M B K1
-_ + - + ! - Un+2 =At2  2At 3j

1 2M Ki M BK(P.2 +Pn+ + n) - .+i+ E-2 -U, (18)
3 [Zt23 1 +tt 2At 3

At is the user-selected time step, and M, B, and K are mass, viscous damping, and
stiffness matrices.

5.2 Sensitivity Analysis

As with steady-state loads, one can imagine beginning with the equations of motion,
carrying out implicit differentiation with respect to design variables, and solving for
the required sensitivity expression. Haftka [2] shows that at least one seeming
difficulty can be dismissed: the time at which a peak occurs does not vary with
design changes. To show this, consider a transient response constraint expressed as

gj(X, U,t) 0 (19)

where X is a vector of design variables, U a vector of displacements, and t is time.
Let tP be the time at which a peak occurs and differentiate.

d9.g 3  Og OU g 3  (20)

But since gj is a local maximum at t = tp (and assuming tp is not an end-point), we
know that Ogj/ t= 0 so that the last term drops out and there is no dependence
on the peak time.

12



We must still decide how to calculate the required sensitivity derivative. Write
equation (18) as

DU.+2 -§(P.+ 2 + P.+, + P.) + CU.+I + EU. (21)

where

D= 2 + j- + 3(22)

C=[ 2M _K] (23)
- A 2 3

E= M B K] (24)

If we assume the loads P are separable:

P = p(t)P.(, Y, z) (25)

where P. is the spatial variation and p(t) the time variation, we can differentiate
(21) with respect to a design variable and get

D'Un+2 + DUn+2 =

l(Pn+2 + Pn+i + Pn)P' + C'U.+I + CU:+l + E'U. + EU' (26)3an

We want to solve for U'+ 2 and we know everything else in the equation except U:,+,
and Un.

D-1 [ .+2 + Pm+i + pn)P.
L3

-D'Un+ 2 + CUn+I + CU'+ + E'U. + EU'] (27)
Assuming zero initial conditions, Uo = 0, the sensitivities for the first three time
steps can be written as

= ift[Di-'P' (28)

U' = D-1 [(P + po)Po - D'U] (29)

U = D- 1 [1(P 2 +p+ p)P' - D'U C'U +CU] (30)

and the general formula is applied for subsequent time steps.

The above derivation was based on a "direct" approach, i.e., the physical stiff-
ness, damping, and mass matrices K, B, M were used. However, the derivation
applies equally well to a modal superposition approach. In modal superposition,
the physical displacement degrees of freedom U are replaced by a vector of modal
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amplitudes each applying to one of the undamped normal modes in a chosen fre-
quency range, i.e.,

q = TU (31)

This is a common technique which is used because it provides a great increase in
efficiency at the expense of a small error in the results.

In a modal formulation with eigenvectors normalized to unit modal mass, we
have rn' = 0, so that the constituent sensitivities reduce to D' = K'/3, C' = -K'/3,
and El = -K'/3, so that the general formula becomes

q+ 2 =

D_[11, (32
D1 (P+2 -+ Pn+1 + P) -K'(q.+ 2 + qn+I + q) + CqC1 +j + Eq] (32)

where the modal load is Q - Tp. Converting back from modal to physical
displacements requires another chain rule differentiation:

q = 1'TU + ,TuI (33)

The load is normally not a function of any design variables, but in the case of a
modal formulation, it involves the eigenvectors. Thus

Qi I = 'Tp (34)

At first glance this approach might seem inefficient since a complete forward inte-
gration of the sensitivity equations is required for each design variable. In practice,
the integration proceeds very quickly when a modal formulation is used. However,
one questions remains which has not been addressed. This concerns the number of
modes that must be retained in the sensitivity solution for adequate accuracy. There
can be no assurance that the number of modes adequate for satisfactory accuracy in
the responses themselves would produce the same accuracy in the sensitivity equa-
tions. A countervailing consideration is the fact that accuracy in sensitivity is not
as important as in the responses themselves. When approximate models are used,
the same sensitivity values are used even after small design changes are made. Thus
the inaccuracies inherent in approximate models would overshadow small errors in
the sensitivity calculations.
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6. Optimization in the Presence of an Active
Control System

Active control systems are clearly needed in large flexible space structures. However,
more conventional vibration suppression methods (passive damping methods and

* optimal structural design) are clearly preferable wherever they can be made to work
because they require no input energy and generally weigh less than active control
systems, relative to their effectiveness. This section discusses some optimization
studies that were done in the presence of active control systems. The purpose of
these studies is to demonstrate that active control systems and optimal structural
design are complementary.

Control systems design is typically undertaken without much interaction with
structural design. Structural designers and analysts compute natural frequencies
and mode shapes of the uncontrolled structure and pass this information to control
system analysts, who do their work using a body of knowledge and techniques
known as optimal control theory. This procedure may not be suitable for space
structures because of the close interaction between structural behavior and control
system behavior. More to the point, traditional methods may not be suitable for
evolution of designs that exploit passive vibration suppression methods wherever
possible, and active control systems only where passive methods are inadequate.

The first step in integrating structural design with control system design is
combined analysis. This means solving a set of equations which represents both the
structural dynamics and the control system dynamics. NASTRAN has a provision
for addition of control system variables which are governed by user-specified transfer
functions and controller gains. With this capability, the designer is at least able to
get an accurate assessment of the combined effects of active and passive damping.
The NASTRAN capability translates the controller dynamics into terms which are
added to the system stiffness, damping, and mass matrices. Controllers that respond
to velocity sensors naturally contribute to the damping matrices. This is the reason
why the alternate methoa of optimization with viscous damping was presented in
Section 8. Other types of controllers have no effect on the optimization method,
although the results may of course be much different in the presence of controllers.

The second step would be integration of control system design and structural
design. This would involve simultaneous variation of structural and control system
variables using integrated sensitivity equations. Some preliminary work has been
done in this area [11,12] but no such development has been attempted here.

An example problem showing optimization in the presence of a control system
is shown in Section 8.5.
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7. DYNOPT Software

This section describes the software that was developed under this contract. The
software consists of Fortran code and DMAP code which are described here.

7.1 Sequence of Operations

Following are the steps involved in running an optimization problem with DYNOPT:

1. Create a finite element model of the structure in the usual manner. In
NASTRAN, element properties are not assigned directly to individual ele-
ments, but are arranged in property groups. Each group may be referenced
by one or more elements. Design variables in DYNOPT refer to property
groups, and thus property groups must be laid out with the optimization
problem in mind.

2. Create a "design model," a specification of design variables, a particular dis-
placement degree of freedom to be minimized, and other constraints which
may concern weight, natural frequencies, etc. Currently, only ROD areas,
QUAD4 thicknesses, and TRIA3 thicknesses are supported as design vari-
ables, but extension to other design variable types would not be difficult.

3. Calculate undamped normal modes.

4. Specify steady-state or transient dynamic loads.

5. Compute natural frequency and mode shape sensitivities in MSC/NASTRAN.
These are used to compute derivatives of the selected peak displacements with
respect to the user-supplied design variables.

6. Using an approximate model, perform a cycle of design optimization.
Recalculate normal modes, dynamic responses, and sensitivities. At this point
the user may review results, make changes, or proceed with another cycle of
design optimization.

7.2 Fortran Code

The Fortran portion of DYNOPT is set up to do the following:

1. Handle user interface through screen management software. Actions are con-
trolled through menu picks. There is a general screen, a screen for design
variable display, one for natural frequency display, one each for frequency
response and transient response displays, and one for submitting
NASTRAN batch runs.
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2. Read the analysis model from a user file to determine starting values of
design variables, loads (including spatial, frequency, and time variation), and
parameters.

3. Read the design model, a file prepared in a format similar to NASTRAN's
bulk data. This file specifies design variables, constraints, and miscellaneous
information.

4. Read the control file which consists of NASTRAN executive control and case
control decks.

5. Prepare and submit a normal modes run for NASTRAN. The proper DMAP
alters are inserted automatically in the executive control.

6. Prepare and submit a short NASTRAN DMAP run to generate load vectors.

7. Prepare and submit a NASTRAN DMAP sensitivity run.

8. Retrieve results from NASTRAN runs (eigenvalues, eigenvectors, modal stiff-
nesses, sensitivities, and loads).

9. Compute frequency response functions.

10. Integrate the time-dependent equations of motion.

11. Write frequency or time responses to files suitable for plotting.

12. Set up the approximate model and call ADS, the optimizer.

13. Maintain a history file showing design changes, response changes, and weight
changes.

7.3 DMAP Code

The second part of DYNOPT is DMAP code. DMAP is NASTRAN's Direct Matrix
Abstraction Program which allows various operations on matrices, vectors, and
scalars, along with input and output of data on binary fies. There is one DMAP
modifications which is applied to Solution 63 and two stand-alone DMAP programs:

1. Alter for Solution 63: Code to write out weight, natural frequencies, modal
stiffnesses, and mode shapes.

2. Stand-alone code to process load bulk data cards and write out binary load
vectors.

3. Stand-alone code to compute sensitivities. This consists of five sections as
follows:
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(a) Compute stiffness and mass matrix sensitivities for the selected design
variables. Code is in place to handle the following classes of design
variables: element property changes, material property changes, and grid
point moves. Only the first class is currently supported by DYNOPT.

(b) Compute weight sensitivities.

(c) Compute eigenvalue sensitivities.

(d) Compute eigenvector sensitivities.

(e) Compute modal stiffness sensitivities.

18



8. DYNOPT Example Problems

This section shows various sample problems that were chosen to illustrate the
capabilities of DYNOPT. The primary intent of these examples was to check out
the software and to demonstrate the basic capabilities. As such, it was necessary
to keep them simple. More complex structures with multiple load paths and more
complicated mode shapes would bring out the advantages of optimization more
clearly. First, the difficulty in making manual design changes would be apparent.
Second, the payoffs in weight versus performance would be more dramatic because
of the multiple opportunities available for improvements in complex structures.

8.1 Box Beam with Steady-state Loads

The first problem was really intended to check out the software, but it also served
to illustrate optimization by stiffening. The problem is a box beam as shown in
Figure 4. Four design variables were chosen:

D1

D3 D

100"1
10"

Figure 4. Box beam
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1. I: Top and bottom thicknesses toward the root of the beam.

2. D2: Top and bottom thicknesses toward the tip of the beam.

3. D3: Side thicknesses toward the root of the beam.

4. D4: Side thicknesses toward the tip of the beam.

A unit vertical tip load was imposed. The constraints chosen were:

1. Fundamental frequency to lie between 35 and 50 Hz.

2. Second frequency to lie between 40 and 70 Hz.

3. Peak tip response in mode 1 to be less than .001 inches.

The problem was started with all thicknesses at 2.0 inches. For this design, the
response constraint was violated. The progress of the design is shown in Figures 5
through 8.

In the first three cycles, we see the weight increase slightly while the peak
response decreases. During these iterations the optimizer does not consider the
weight but only tries to satisfy the violated constraint. Thereafter the weight de-
creases slightly while the response constraint is satisfied (within close tolerance),
and the second natural frequency is near its upper limit.

This problem, while academic, did serve to validate the software and to demon-
strate that the approximation concept outlined in Section 2.3 provides convergence
in only a few design cycles. Each design cycle entails a complete finite element
analysis and sensitivity analysis.
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8.2 Long Slender Truss: Frequency Response

The second problem is a long slender plane truss with 50 bays, each 12 inches
square. The truss is fixed at one end and free at the other (Figure 9). The truss
is loaded by a transverse force located at 80% of the distance from the root to the
free end. The force is assumed to have uniform frequency content. The objective
is to reduce the tip rotation with minimal weight increase. For design purposes,
the truss is divided into five segments of equal length. Within each segment, two
design variables are specified: one for the chord members and one for the diagonal
members. For simplicity, all members are started with cross-sections of one square
inch. Members are assumed to carry only axial force.

LOAD

Section I Section 2 Section 3 Section 4 Section 5

Figure 9. Space truss

Initially, the response is as shown in Figure 10. The goal is to reduce the peak
responses for the first and third modes while maintaining the second mode peak at
approximately the same value or less. The peak values and goals selected are as
follows:

Initial Desired Maximum
Peak Response Peak Response

Mode (jA-radians) (A-radians)
1 4735 1000
2 8.96 10.0
3 58.45 20.0

Technically, these "goals" are implemented as behavior constraints. Nominally,
minimal weight is the objective, but the optimizer ignores the weight as long as any
constraints are active. Instead, it merely tries to achieve a feasible design.

Figure 11 shows a history of the frequency response as the design evolves. The
first mode peak is reduced to approximately 1000 micro-radians, the second peak is
held at approximately its original value, and the third mode is reduced to a value
slightly lower than the allowed maximum. The history of the individual peaks may
be seen more dearly in Figure 12. Since the initial design violated two constraints
by approximately a factor of five, the optimizer let the weight increase (by a factor
of about three) during the initial iterations. Once the constraints were satisfied, it
was able to reduce the weight slightly.
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8.3 Long Slender Truss: Transient Response

The same truss was used for optimization under transient dynamic loads. The truss
was subject to a transient load whose sawtooth time record may be seen in Figure 13.
A design model was prepared using only the chord members as design variables, with
peaks at 0.1, 0.15, 0.2, and 0.25 sec not to exceed 0.3 in. Optimization was begun
with an infeasible design, i.e., the peak values were greater than 0.3. Optimization
then proceeded until all peaks were satisfied (Figure 14). The weight had increased
initially, and then dropped off after the constraints were satisfied (Figure 15). Note
that it is not necessary to specify the exact time at which each constrained peak
occurs. A search is made in the neighborhood of each specified time for a local
maximum, and then the maximum is tracked as the design evolves.

2.0

1.5

1.0

0.5

*£ 0.0
3 -0.5

-1.0

-1.5

- 2 .0 i i i I L L L
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Time, Sec

Figure 13. Load specified for transient optimization
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8.4 Truss: Transient Response, Alternate Starting Design

The same problem was rerun, this time starting with a design having excessive
weight, for which constraints were satisfied. This time the responses are as shown
in Figures 16 and 17. Initially, the weight decreases drastically and the response
increases until the constraint is reached at 0.3 in. Thereafter, the weight continues
to decrease slightly while the constraint is satisfied (or nearly so). This particular
starting point produced a lower weight than that reported in the previous section.
However, the trend in that case was down and it was likely that more weight could
have been shed if more optimization cycles had been performed.

0.8

LEGEND
0.7 Original design

Redesign 1
Redesign 2

0.6 .-.- Redesign 3
._ Redesign 4

0.5 - -- Redesign 5
0.5 - Redesign 6
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E 0.4
4)

o 0..

0.2 ...... .

0.1 --. -''

0.0 I
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Time, sec

Figure 16. Truss transient response history, alternate starting design

8.5 Truss with Active Controller: Frequency Domain

The truss described in Section 8.2 was provided with active controllers on four of
its diagonals (Figure 18).

These controllers were set up to sense velocity and provide reactive forces in the
diagonals proportional to the sensed velocities. The gains were somewhat arbitrarily
set to 400,000 lb/in/sec. The response of the truss to the same load was then as
shown in Figure 19. As might be expected, the controllers were very effective
at damping out higher modes but had virtually no impact on the lower mode.
Therefore it was decided to let the optimizer tune the structure to consider only
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Figure 19. Truss with active controllers: initial response

the first peak, relying on the controllers to handle the other peaks. The frequency
response history may be seen in Figure 20, and the first peak history in Figure 21.
As the response history shows, the structural optimization defeated the damping
provided by the controllers for the higher modes. This can be attributed to the
fact that the optimizer reduced the members at which controllers were located to
very small sizes. The effect of this change was to drive energy out of these members
and reduce the effectiveness of the damping supplied by the controllers to these
members. With hindsight, it is clear that controllers should have been placed at
locations which were more effective in higher modes, and the optimizer should not
have been allowed to reduce these members.

8.6 Summary

The examples shown here were chosen to illustrate the kinds of problems that
DYNOPT can do. Optimization for either steady-state or transient loads was
shown, and an example with a control system was run. However, the structures
shown are not sufficiently complex or realistic to demonstrate the quantitative pay-
offs that can be expected on real-life structures Furthermore, it is a mistake to judge
an optimization code by the amount of weight reduction that is demonstrated on
any particular example. This is because the weight history can be skewed drasti-
cally by arbitrary selection of a very heavy starting design. DYNOPT should be
judged by the potential shown in the forgoing examples, and by the payoffs that
will be demonstrated on real structures in Phase I.
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9. Link to a Viscoelastic Material Database

Under another Air Force contract, CSA developed an optimization code called
ODAMP (13] that selects optimal damping treatments on the basis of modal strain
energy. Under this effort, ODAMP has been made to interface with a database of
viscoelastic material properties, also developed by CSA. The reason for this devel-
opment is that the shear moduli and thicknesses selected by ODAMP may not be
available in any actual materials. This new capability enables users to select actual
materials that most nearly match the computer-generated optimal values. After
selecting real materials, the user may wish to re-compute modal strain energies and
perhaps perform more optimization cycles. Also, knowing loss factor values, he may
wish to perform forced response calculations.

For a particular viscoelastic shear modulus design variable the user may request
a search to find the material that most closely matches the optimal value found for
that particular shear modulus. In order to define the search properly, the user must
specify some additional data that is not considered in the optimization, including
a temperature and a minimum acceptable loss factor. The user must also specify
a range of frequencies, which would typically span the natural frequencies that
were included in the optimization. Alternatively, the user may specify a particular
frequency and give a range of modulus values.

The search software returns with a report of the number of materials which sat-
isfy the specifications, if any. They are identified by name and identifying number.
The user may then request evaluations of these materials for a range of tempera-
tures and frequencies. This report returns values of shear modulus and loss factor
for each pair of temperature and frequency values.

Figure 22 is a log of an interactive session using this capability. The initial
SHOW command shows two VEM design variables, and the selected G values, as
well as the natural frequencies of the modes whose modal strain energy was maxi-
mized. The RANGE,FREQUENCY command and the FLOWER and FUPPER
commands specify the frequency range for the search. Temperature and minimum
acceptable loss factor are specified, and a search is requested. At present, the
database contains a limited number of materials, and consequently only a single
material is found, "polyurethane 24-8-1." The user then asks for evaluation of the
material. Modulus and loss factor are then displayed for a range of frequencies.
The user then selects the other design variable, OUTNEMG, for which the opti-
mal value of G is 11,200 psi. After changing the loss factor cutoff, another search is
conducted and two materials are found, including polyurethane 24-8-1 which also
satisfied the previous search. The user would then presumably request a forced
response analysis of his structure using the properties of this material.
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ODAMP'SHOW
Modes used in optimization:

1 73.200
2 101.000
3 119.900

Design variables used in optimization
Name Optimal G
LEGVEKG 9840.000
OUTVEMG 11220.000

ODAMPSELECT,LEGVEMG
Optimal G for LEGVENG is 9840.00
ODAMPRANGE,FREQ
ODAMPPLOWER-60
ODAMPFUPPER-200
ODAMPTEMP-70
ODAMP3ETAMIN-0.9
ODAMPSEARCH

1 materials were found.
ID Desoription
2 POLYURETHANE 24-8-1

Enter EVALUATE,id to evaluate a particular material
Where "id" is chosen from the list above.
ODAMPEVALUATE,2
Material Temperature Frequency Modulus Loss factor

2 70.00 60.00 8463.65 0.949
2 70.00 67.00 8989.31 0.938
2 70.00 74.00 9489.46 0.928
2 70.00 81.00 9967.27 0.918
2 70.00 88.00 10425.30 0.909
2 70.00 95.00 10865.62 0.900
2 70.00 102.00 11289.94 0.892
2 70.00 109.00 11699.72 0.884
2 70.00 116.00 12096.18 0.876
2 70.00 123.00 12480.40 0.869
2 70.00 130.00 12853.29 0.862
2 70.00 137.00 13215.65 0.855
2 70.00 144.00 13568.22 0.849
2 70.00 151.00 13911.60 0.842
2 70.00 158.00 14246.39 0.836
2 70.00 165.00 14573.07 0.830
2 70.00 172.00 14892.12 0.825
2 70.00 179.00 15203.94 0.819
2 70.00 186.00 15508.91 0.814
2 70.00 193.00 15807.39 0.809
2 70.00 200.00 16099.68 0.804

ODAMP'SELE T,OUTVEKG
Optimal G for OUTVEMG is 11220.00
ODAMP>ETA_-IN-0.6
ODAMP SEARCH

2 materials were found.
ID Description
1 SMRD-IOOF-90 -M870828
2 POLYURETHANE 24-8-1

Enter EVALUATEid to evaluate a particular material
Where "id" is chosen from the list above.

Figure 22. Log of an interactive database query session
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10. Beam Cross-section Design

An approach to design of beam cross-sections has been developed and partially
tested. The problem with optimization of beam finite elements is that their cross-
sections are usually described by integrated properties (area, two moments of inertia,
and a torsion constant), and these parameters are not very good for design. This
is because it may not be possible to select a realistic cross-section configuration
corresponding to the integrated property values selected by the optimizer. In fact,
in many cases, the optimizer will increase the moment of inertia without limit,
providing more stiffness, while reducing the area, and thus the weight, indefinitely.
Even if constraints are introduced to prevent unreasonable ratios of area to moment
of inertia, the designer is must still choose the details of the section, and insure that
secondary design criteria such as local buckling allowables are satisfied.

The basic idea here is to develop a library of cross-sections (rectangular, hol-
low tube, z-shape, etc.). For each shape, the conventional elastic properties (area,
moment of inertia, torsion constant) are coded in a subroutine in terms of the geo-
metric parameters defining that shape. Sensitivities of each property with respect
to each geometric parameter are also defined.

h

b

Figure 23. Rectangular cross-section

The rectangular cross-section (Figure 23) provides the simplest example. The
geometric parameters are simply the height h and width b. The area A, bending
moments of inertia I, and 12, and the torsion constant K are coded in terms of
h and b. Sensitivities (OA/8h, OA/Ob, e 1/8h, etc.) are also calculated. For the
rectangular cross-section, the values and sensitivities of the slenderness ratios h/b
and b/h are calculated. This information may be used to implement slenderness
limits that can be used to prevent unreasonable shapes or avoid local buckling. The
allowable stress for local buckling of a rectangular cross-section depends on the load
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in the beam, the length of the beam, and its material properties in addition to its
cross-section parameters, i.e.,

S< q= (h, b, P, length, material properties) (35)

In a redundant structure, the load internal P is an implicit function of the
design variables. Therefore the total sensitivity of the local buckling constraint
must include this implicit dependence, i.e.,

eq._I_ 8a".. + 0' OP (6
8h total Oh (36)

These calculations would be done outside of the cross-section subroutines, however.
A symmetric Z-section was coded with four independent design variables (flange

width and thickness; web depth and thickness - Figure 24). Two slenderness ratios
(b//t and 4/t,) are defined.

tfL bf

tw dw

Figure 24. Z-shaped cross-section

Some rather simple tests were conducted to verify the sensitivity calculations, as
shown in Figures 25 through 30. These were intended to provide visual confirmation
of the tangent line based on the sensitivity, and to provide some measure of the
nonlinearity of some of the integrated parameters with respect to particular design
variables.

In addition to calculations of integrated properties and their sensitivities, it
would be desirable to calculate extreme fiber stresses (and their sensitivities) given
forces and moments (and their sensitivities). For the rectangular section, the
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37



0.80 ,

LEGEND

0.78 - Exact

- - - - Projection based on sensitivity

._ 0.76

16 0.74

Eo 0.72E

I_-0
C

0.70

0.68 - - - - - --

0,66 I i I I i
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Web thickness t-w

Figure 29. Z-section: moment of inertia versus web thickness

0.05 - I I I I

LEGEND
- Exact

0.04 - .-- Projection based on sensitivity

C 0.03

C0

C
• 0.02

I--

0.01----

0.00 I I i
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Web thickness t-w

Figure 30. Z-section: torsion constant versus web thickness

38



stresses would be
F M (37)

where S is the section modulus. Thus, for example,

Bo" 1 8F F 8A 1 OM M 8S
&h AOh A 2 h S Oh S' (38)

For other sections, it might be necessary to choose four or more points on the
cross-section and code the relevant stress formulas for each point.

The above discussion assumes that all geometric parameters are retained as
independent design variables in an optimization formulation, subject to constraints
such as slenderness ratio limits. In some cases this could lead to an excessive
number of independent design variables or stress constraints. In these cases it
would be possible to provide for a reduced set of design variables. For example,
one could allow only h to vary in a rectangular section, requiring a fixed h/b ratio.
Such formulations could retain the same subroutine library with some additional
overlaying code to carry out the reduction of some of the geometric parameters to
dependent status.

Another point: a cross-section library could easily be augmented by a "generic"
section in which properties such as section modulus are approximated by an empir-
ical formula such as S = ki A + k2 1/ 2.

The conclusion we draw from this study is that this "direct" approach to beam
cross-sections appears quite promising. The advantages are as follows:

1. The designer can work directly with the geometric parameters that describe
each cross-section, and does not have to worry about intermediate calculation
of moments of inertia, etc.

2. Stresses and stress sensitivities can be recovered directly from forces and
moments, and their sensitivities.

3. The coding involved for each cross-section is fairly simply. New cross-sections
can be added as needed, or old ones modified.

As has been pointed out, a detailed description of each cross-section type may
provide more freedom than is required for a particular application. There may,
for example, be no unique combination of the four properties of a Z-section that
satisfies a given design problem. There must always be provision for reducing the
number of independent variables as mentioned above.
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10.1 Summary

The examples shown here were chosen to illustrate the kinds of problems that
DYNOPT can do. Optimization for either steady-state or transient loads was
shown, and an example with a control system was run. However, the structures
shown are not sufficiently complex or realistic to demonstrate the quantitative pay-
offs that can be expected on real-life structures that are so much more complex
than simple trusses and box beams. Furthermore, it is a mistake to judge an op-
timization code by the amount of weight reduction that is demonstrated on any
particular example. This is because the weight history can be skewed drastically
by arbitrary selection of a very heavy starting design. DYNOPT should be judged
by the potential shown in the forgoing examples, and by the payoffs that will be
demonstrated on real structures in Phase II.
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11. Plans for Follow-on Software Development

There is a need for optimization software tailored to SDI structures. As was pointed
out in the introduction, there are three fundamental approaches to vibration sup-
pression for SDI structures: basic structural design, design of damping treatments,
and control system design. This report has presented developments in optimization
that support these design problems. They are shown in Figure 1 in relation to pre-
ceding developments in optimization. Phase II will expand the new optimization
capabilities and integrate them with these previous capabilities in a new software
package.

Phase II will consist of two basic parts: further testing and refinement of indi-
vidual optimization techniques, and development of an integrated package. Testing
and refinement is needed to shake out software shortcomings and any difficulties
that may arise with large problems. Integration is needed to make it possible to
exploit each technology where it is most effective.

The following criteria are proposed for the software:

1. It should support constraints, objectives, and design variables that are impor-
tant for SDI structures. These include the following:

(a) Design variables: Member sizes, gage thicknesses, damping material
properties and thicknesses, other material properties, and concentrated
spring and mass properties.

(b) Constraints: Static stiffness and stress, natural frequencies and mode
shapes, modal strain energy, dynamic displacements and stresses.

(c) Objective: weight, or any response that can be constrained.

Steps should be taken to move away from dependence on MSC/NASTRAN
so that analysis results and sensitivities could eventually be obtained from
other codes such as ASTROS and COSMIC NASTRAN. This could be done
by obtaining this information from a neutral database rather than directly
from MSC/NASTRAN. This development would also facilitate calculation
of sensitivities using existing codes that do not provide explicit sensitivity
calculations [14].

2. It should use existing software where possible. CADDB [15] is a likely database
software candidate. CADDB provides the database for the Air Force's AS-
TROS code [16], and is specially designed for finite element or other engineer-
ing data. CADDB may be accessed through calls from MAPOL, ASTROS'
high-level language, through Fortran calls, or interactively via the ICE [17]
interface, using an SQL-like query language.
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3. It should provide for unattended computation of optimal solutions, or for user
intervention at any stage. User interaction should be made via modem screen
management software and the associated database software.

4. It should provide for graphic displays of optimization data such as design
history or response history. The link to display software should be such that
design trends may be displayed graphically on three-dimensional structure
plots (e.g., in PATRAN).

ASTROS is an excellent optimization code. However, it is tailored to aircraft struc-
tures and is thus not entirely suitable for SDI structures. In addition to CADDB,
much could be gained by studying the ASTROS code and perhaps borrowing pieces
of it.

These points will be elaborated in the Phase II proposal for this SBIR effort.
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Appendix
Eigenvalue and Eigenvector Sensitivity Equations

Following are derivations of eigenvalue and eigenvector sensitivity equations.
Assume a particular mode has been chosen. The eigenvalue equation is

[K - AM]4 = 0 (A.1)

Differentiate:
[K'- ,'M - AM']@ + [K - AM]I = 0 (A.2)

Premultiplying by @T,

@T[K' - A'M - AMl@ + 4T[K - AM]f' = 0 (A.3)

From transposing (A.1) we know that 4TK - ATM, so that the second term of

(A.3) drops out, and, solving for A',

iT(K- AM')4' (A.4)

Note thdt the denominator is simply the modal mass, and eigenvectors are usually
normalized to give this quantity unit value.

For eigenvector sensitivity, rewrite Equation (A.2) as:

D@'= f (A.5)

where
D = K- AM (A.6)

and
f = [A'M + AM' - K] (A.7)

Equation (A.5) is s.ngular but D may be reduced by one order by invoking the nor-
malizing equation lor . I It is then solved like a static problem with one right-hand
side per design variable. D retains the sparseness of the original mass and stiffness
matrices. The whole process must be repeated for each mode to be differentiated.
This process can be quite time-consuming, depending on the number of mode shapes
to be differentiated and the number of design variables.

The ingredients of both eigenvalue and eigenvector sensitivities are the stiffness
and mass derivatives which may be obtained by running the DSVGx modules in
MSC/NASTRAN or by a finite difference operation.

'In the case of repeated roots of multiplicity m, special steps must be taken to reduce the order
of D by m. This case is not dealt with here.
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